skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. The synthesis of biaryl compounds by employing carboxylic acids as double aryl group donors is reported. 
    more » « less
  4. A series of bimetallic carbene-metal-amide (cMa) complexes have been prepared with bridging biscarbene ligands to serve as a model for the design of luminescent materials with large oscillator strengths and small energy differences between the singlet and triplet states (dE ST). The complexes have a general structure (R2N)Au(:carbene—carbene:)Au(NR2). The bimetallic complexes show solvation-dependent absorption and emission that is analyzed in detail. It is found that the molar absorptivity of the bimetallic complexes is correlated with the energy barrier to rotation of the metal-ligand bond. The bimetallic cMa complexes also exhibit short emission lifetimes (t = 200-300 ns) with high photoluminescence efficiencies (PL >95%). The radiative rates of bimetallic cMa complexes are 3 to 4 times faster than that of the corresponding monometallic complexes. Analysis of temperature-dependent luminescence data indicates that the lifetime for the singlet state (τ_(S_1 )) of bimetallic cMa complexes are near 12 ns with a dE ST of 40 50 meV. The presented compounds provide a general design for cMa complexes to achieve small values for dE ST while retaining high radiative rates. Solution processed OLEDs made using two of the complexes as luminescent dopants show high efficiency and low roll-off at high luminance. 
    more » « less
  5. Abstract Given a family$$\mathcal{F}$$of bipartite graphs, theZarankiewicz number$$z(m,n,\mathcal{F})$$is the maximum number of edges in an$$m$$by$$n$$bipartite graph$$G$$that does not contain any member of$$\mathcal{F}$$as a subgraph (such$$G$$is called$$\mathcal{F}$$-free). For$$1\leq \beta \lt \alpha \lt 2$$, a family$$\mathcal{F}$$of bipartite graphs is$$(\alpha,\beta )$$-smoothif for some$$\rho \gt 0$$and every$$m\leq n$$,$$z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any$$(\alpha,\beta )$$-smooth family$$\mathcal{F}$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\rho (\frac{2n}{5}+o(n))^{\alpha -1}$$is bipartite. In this paper, we strengthen their result by showing that for every real$$\delta \gt 0$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\delta n^{\alpha -1}$$is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families$$\mathcal{F}$$consisting of the single graph$$K_{s,t}$$when$$t\gg s$$. We also prove an analogous result for$$C_{2\ell }$$-free graphs for every$$\ell \geq 2$$, which complements a result of Keevash, Sudakov and Verstraëte. 
    more » « less
  6. This study presents the synthesis and characterization of two spirobifluorenyl derivatives substituted with either triphenylmethyl (SB-C) or triphenylsilyl (SB-Si) moieties for use as host materials in phosphorescent organic light-emitting diodes (PHOLED). Both molecules have similar high triplet energies and large energy gaps. Blue Ir(tpz)3 and green Ir(ppy)3 phosphorescent devices were fabricated using these materials as hosts. Surprisingly, SB-Si demonstrated superior charge-transporting ability compared to SB-C, despite having similar energies for their valence orbitals. In particular, SB-Si proved to be a highly effective host for both blue and green devices, resulting in maximum efficiencies of 12.6% for the Ir(tpz)3 device and 9.6% for the Ir(ppy)3 device. These results highlight the benefits of appending the triphenylsilyl moiety onto host materials and underscore the importance of considering the morphology of hosts in the design of efficient PHOLEDs. 
    more » « less
  7. One of the most important issues in modern condensed matter physics is the realization of fractionalized excitations, such as the Majorana excitations in the Kitaev quantum spin liquid. To this aim, the 3d-based Kitaev material Na2Co2TeO6 is a promising candidate whose magnetic phase diagram of B // a* contains a field-induced intermediate magnetically disordered phase within 7.5 T < |B| < 10 T. The experimental observations, including the restoration of the crystalline point group symmetry in the angle-dependent torque and the coexisting magnon excitations and spinon-continuum in the inelastic neutron scattering spectrum, provide strong evidence that this disordered phase is a field induced quantum spin liquid with partially polarized spins. Our variational Monte Carlo simulation with the effective K-J1-Γ-Γ'-J3 model reproduces the experimental data and further supports this conclusion. 
    more » « less